View Issue Details
ID | Project | Category | View Status | Date Submitted | Last Update |
---|---|---|---|---|---|
0003692 | OpenFOAM | Bug | public | 2021-07-02 08:41 | 2021-07-02 15:14 |
Reporter | fede | Assigned To | will | ||
Priority | normal | Severity | minor | Reproducibility | always |
Status | resolved | Resolution | fixed | ||
Platform | Linux | OS | Debian | OS Version | 9 |
Product Version | dev | ||||
Fixed in Version | dev | ||||
Summary | 0003692: options "-dict" and "-case" do not work when used together in decomposePar | ||||
Description | If options "-case" and "-dict" are used at the same time when decomposePar is launched, the application does not find the dictionary file. This is due to a wrong definition of the variable dictPath for this very specific case. Please find attached a file with a proposal of modification to decomposePar.C to fix the issue. Version tested: OpenFOAM-dev, commit 261d5ccd6. Kind regards, federico | ||||
Steps To Reproduce | cd $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak blockMesh -case damBreak setFields -case damBreak Then, none of these commands works: decomposePar -case damBreak -dict system/decomposeParDict decomposePar -case damBreak -dict damBreak/system/decomposeParDict decomposePar -case damBreak -dict system/ | ||||
Tags | No tags attached. | ||||
|
decomposePar.C (46,374 bytes)
/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. Application decomposePar Description Automatically decomposes a mesh and fields of a case for parallel execution of OpenFOAM. Usage \b decomposePar [OPTION] Options: - \par -cellDist Write the cell distribution as a labelList, for use with 'manual' decomposition method or as a volScalarField for post-processing. - \par -region \<regionName\> \n Decompose named region. Does not check for existence of processor*. - \par -allRegions \n Decompose all regions in regionProperties. Does not check for existence of processor*. - \par -copyZero \n Copy \a 0 directory to processor* rather than decompose the fields. - \par -copyUniform \n Copy any \a uniform directories too. - \par -constant - \par -time xxx:yyy \n Override controlDict settings and decompose selected times. Does not re-decompose the mesh i.e. does not handle moving mesh or changing mesh cases. - \par -fields \n Use existing geometry decomposition and convert fields only. - \par -noSets \n Skip decomposing cellSets, faceSets, pointSets. - \par -force \n Remove any existing \a processor subdirectories before decomposing the geometry. - \par -ifRequired \n Only decompose the geometry if the number of domains has changed from a previous decomposition. No \a processor subdirectories will be removed unless the \a -force option is also specified. This option can be used to avoid redundant geometry decomposition (eg, in scripts), but should be used with caution when the underlying (serial) geometry or the decomposition method etc. have been changed between decompositions. - \par -dict \<filename\> Specify alternative dictionary for the decomposition. \*---------------------------------------------------------------------------*/ #include "OSspecific.H" #include "fvCFD.H" #include "IOobjectList.H" #include "domainDecomposition.H" #include "labelIOField.H" #include "labelFieldIOField.H" #include "scalarIOField.H" #include "scalarFieldIOField.H" #include "vectorIOField.H" #include "vectorFieldIOField.H" #include "sphericalTensorIOField.H" #include "sphericalTensorFieldIOField.H" #include "symmTensorIOField.H" #include "symmTensorFieldIOField.H" #include "tensorIOField.H" #include "tensorFieldIOField.H" #include "pointFields.H" #include "regionProperties.H" #include "readFields.H" #include "dimFieldDecomposer.H" #include "fvFieldDecomposer.H" #include "pointFieldDecomposer.H" #include "lagrangianFieldDecomposer.H" #include "decompositionModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { const labelIOList& procAddressing ( const PtrList<fvMesh>& procMeshList, const label proci, const word& name, PtrList<labelIOList>& procAddressingList ) { const fvMesh& procMesh = procMeshList[proci]; if (!procAddressingList.set(proci)) { procAddressingList.set ( proci, new labelIOList ( IOobject ( name, procMesh.facesInstance(), procMesh.meshSubDir, procMesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ) ) ); } return procAddressingList[proci]; } void decomposeUniform ( const bool copyUniform, const domainDecomposition& mesh, const Time& processorDb, const word& regionDir = word::null ) { const Time& runTime = mesh.time(); // Any uniform data to copy/link? const fileName uniformDir(regionDir/"uniform"); if (fileHandler().isDir(runTime.timePath()/uniformDir)) { Info<< "Detected additional non-decomposed files in " << runTime.timePath()/uniformDir << endl; const fileName timePath = fileHandler().filePath(processorDb.timePath()); if (copyUniform || mesh.distributed()) { if (!fileHandler().exists(timePath/uniformDir)) { fileHandler().cp ( runTime.timePath()/uniformDir, timePath/uniformDir ); } } else { // link with relative paths string parentPath = string("..")/".."; if (regionDir != word::null) { parentPath = parentPath/".."; } fileName currentDir(cwd()); chDir(timePath); if (!fileHandler().exists(uniformDir)) { fileHandler().ln ( parentPath/runTime.timeName()/uniformDir, uniformDir ); } chDir(currentDir); } } } } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { argList::addNote ( "decompose a mesh and fields of a case for parallel execution" ); argList::noParallel(); #include "addRegionOption.H" #include "addAllRegionsOption.H" argList::addBoolOption ( "cellDist", "write cell distribution as a labelList - for use with 'manual' " "decomposition method or as a volScalarField for post-processing." ); argList::addBoolOption ( "copyZero", "Copy \a 0 directory to processor* rather than decompose the fields" ); argList::addBoolOption ( "copyUniform", "copy any uniform/ directories too" ); argList::addBoolOption ( "fields", "use existing geometry decomposition and convert fields only" ); argList::addBoolOption ( "noFields", "opposite of -fields; only decompose geometry" ); argList::addBoolOption ( "noSets", "skip decomposing cellSets, faceSets, pointSets" ); argList::addBoolOption ( "force", "remove existing processor*/ subdirs before decomposing the geometry" ); argList::addBoolOption ( "ifRequired", "only decompose geometry if the number of domains has changed" ); argList::addOption ( "dict", "dictionary file name", "specify alternative decomposition dictionary" ); // Include explicit constant options, have zero from time range timeSelector::addOptions(true, false); #include "setRootCase.H" bool region = args.optionFound("region"); bool writeCellDist = args.optionFound("cellDist"); bool copyZero = args.optionFound("copyZero"); bool copyUniform = args.optionFound("copyUniform"); bool decomposeFieldsOnly = args.optionFound("fields"); bool decomposeGeomOnly = args.optionFound("noFields"); bool decomposeSets = !args.optionFound("noSets"); bool forceOverwrite = args.optionFound("force"); bool ifRequiredDecomposition = args.optionFound("ifRequired"); const word dictName("decomposeParDict"); if (decomposeGeomOnly) { Info<< "Skipping decomposing fields" << nl << endl; if (decomposeFieldsOnly || copyZero) { FatalErrorInFunction << "Cannot combine geometry-only decomposition (-noFields)" << " with field decomposition (-noFields or -copyZero)" << exit(FatalError); } } // Set time from database #include "createTime.H" // Check if the dictionary is specified on the command-line fileName dictPath = fileName::null; if (args.optionFound("dict")) { dictPath = args["dict"]; if (args.optionFound("case")) { const fileName caseName(args["case"]); dictPath=cwd()/caseName/dictPath; } dictPath = ( isDir(dictPath) ? dictPath/dictName : dictPath ); } else { dictPath = runTime.system()/dictName; } // Allow override of time instantList times = timeSelector::selectIfPresent(runTime, args); const wordList regionNames(selectRegionNames(args, runTime)); { // Determine the existing processor count directly label nProcs = fileHandler().nProcs(runTime.path()); if (forceOverwrite) { if (region) { FatalErrorInFunction << "Cannot force the decomposition of a single region" << exit(FatalError); } Info<< "Removing " << nProcs << " existing processor directories" << endl; // Remove existing processors directory fileNameList dirs ( fileHandler().readDir ( runTime.path(), fileType::directory ) ); forAllReverse(dirs, diri) { const fileName& d = dirs[diri]; // Starts with 'processors' if (d.find("processors") == 0) { if (fileHandler().exists(d)) { fileHandler().rmDir(d); } } // Starts with 'processor' if (d.find("processor") == 0) { // Check that integer after processor fileName num(d.substr(9)); label proci = -1; if (Foam::read(num.c_str(), proci)) { if (fileHandler().exists(d)) { fileHandler().rmDir(d); } } } } } else if (nProcs && !region && !decomposeFieldsOnly) { FatalErrorInFunction << "Case is already decomposed with " << nProcs << " domains, use the -force option or manually" << nl << "remove processor directories before decomposing. e.g.," << nl << " rm -rf " << runTime.path().c_str() << "/processor*" << nl << exit(FatalError); } } forAll(regionNames, regioni) { const word& regionName = regionNames[regioni]; const word& regionDir = Foam::regionDir(regionName); Info<< "\n\nDecomposing mesh " << regionName << nl << endl; // Determine the existing processor count directly label nProcs = fileHandler().nProcs(runTime.path(), regionDir); // Get the dictionary IO const IOobject dictIO ( dictPath == fileName::null ? IOobject ( dictName, runTime.time().system(), regionDir, // use region if non-standard runTime, IOobject::MUST_READ_IF_MODIFIED, IOobject::NO_WRITE, false ) : IOobject ( dictPath, runTime, IOobject::MUST_READ_IF_MODIFIED, IOobject::NO_WRITE, false ) ); // Get requested numberOfSubdomains. Note: have no mesh yet so // cannot use decompositionModel::New const label nDomains = IOdictionary(dictIO).lookup<label>("numberOfSubdomains"); // Give file handler a chance to determine the output directory const_cast<fileOperation&>(fileHandler()).setNProcs(nDomains); if (decomposeFieldsOnly) { // Sanity check on previously decomposed case if (nProcs != nDomains) { FatalErrorInFunction << "Specified -fields, but the case was decomposed with " << nProcs << " domains" << nl << "instead of " << nDomains << " domains as specified in " << dictName << nl << exit(FatalError); } } else if (nProcs) { if (ifRequiredDecomposition && nProcs == nDomains) { // Reuse the decomposition decomposeFieldsOnly = true; Info<< "Using existing processor directories" << nl; } } Info<< "Create mesh" << endl; domainDecomposition mesh ( IOobject ( regionName, runTime.timeName(), runTime, IOobject::NO_READ, IOobject::NO_WRITE, false ), dictIO.objectPath() ); // Decompose the mesh if (!decomposeFieldsOnly) { mesh.decomposeMesh(dictIO.objectPath()); mesh.writeDecomposition(decomposeSets); if (writeCellDist) { const labelList& procIds = mesh.cellToProc(); // Write the decomposition as labelList for use with 'manual' // decomposition method. labelIOList cellDecomposition ( IOobject ( "cellDecomposition", mesh.facesInstance(), mesh, IOobject::NO_READ, IOobject::NO_WRITE, false ), procIds ); cellDecomposition.write(); Info<< nl << "Wrote decomposition to " << cellDecomposition.localObjectPath() << " for use in manual decomposition." << endl; // Write as volScalarField for postprocessing. volScalarField cellDist ( IOobject ( "cellDist", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh, dimensionedScalar(dimless, 0) ); forAll(procIds, celli) { cellDist[celli] = procIds[celli]; } cellDist.write(); Info<< nl << "Wrote decomposition as volScalarField to " << cellDist.name() << " for use in postprocessing." << endl; } fileHandler().flush(); } if (copyZero) { // Copy the 0 directory into each of the processor directories fileName prevTimePath; for (label proci = 0; proci < mesh.nProcs(); proci++) { Time processorDb ( Time::controlDictName, args.rootPath(), args.caseName()/fileName(word("processor") + name(proci)) ); processorDb.setTime(runTime); if (fileHandler().isDir(runTime.timePath())) { // Get corresponding directory name (to handle processors/) const fileName timePath ( fileHandler().objectPath ( IOobject ( "", processorDb.timeName(), processorDb ), word::null ) ); if (timePath != prevTimePath) { Info<< "Processor " << proci << ": copying " << runTime.timePath() << nl << " to " << timePath << endl; fileHandler().cp(runTime.timePath(), timePath); prevTimePath = timePath; } } } } else if (!decomposeGeomOnly) { // Decompose the field files // Cached processor meshes and maps. These are only preserved if // running with multiple times. PtrList<Time> processorDbList(mesh.nProcs()); PtrList<fvMesh> procMeshList(mesh.nProcs()); PtrList<labelIOList> faceProcAddressingList(mesh.nProcs()); PtrList<labelIOList> cellProcAddressingList(mesh.nProcs()); PtrList<labelIOList> boundaryProcAddressingList(mesh.nProcs()); PtrList<fvFieldDecomposer> fieldDecomposerList(mesh.nProcs()); PtrList<dimFieldDecomposer> dimFieldDecomposerList(mesh.nProcs()); PtrList<labelIOList> pointProcAddressingList(mesh.nProcs()); PtrList<pointFieldDecomposer> pointFieldDecomposerList ( mesh.nProcs() ); // Loop over all times forAll(times, timeI) { runTime.setTime(times[timeI], timeI); Info<< "Time = " << runTime.timeName() << endl; // Search for list of objects for this time IOobjectList objects(mesh, runTime.timeName()); // Construct the vol fields // ~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<volScalarField> volScalarFields; readFields(mesh, objects, volScalarFields); PtrList<volVectorField> volVectorFields; readFields(mesh, objects, volVectorFields); PtrList<volSphericalTensorField> volSphericalTensorFields; readFields(mesh, objects, volSphericalTensorFields); PtrList<volSymmTensorField> volSymmTensorFields; readFields(mesh, objects, volSymmTensorFields); PtrList<volTensorField> volTensorFields; readFields(mesh, objects, volTensorFields); // Construct the dimensioned fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<DimensionedField<scalar, volMesh>> dimScalarFields; readFields(mesh, objects, dimScalarFields); PtrList<DimensionedField<vector, volMesh>> dimVectorFields; readFields(mesh, objects, dimVectorFields); PtrList<DimensionedField<sphericalTensor, volMesh>> dimSphericalTensorFields; readFields(mesh, objects, dimSphericalTensorFields); PtrList<DimensionedField<symmTensor, volMesh>> dimSymmTensorFields; readFields(mesh, objects, dimSymmTensorFields); PtrList<DimensionedField<tensor, volMesh>> dimTensorFields; readFields(mesh, objects, dimTensorFields); // Construct the surface fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<surfaceScalarField> surfaceScalarFields; readFields(mesh, objects, surfaceScalarFields); PtrList<surfaceVectorField> surfaceVectorFields; readFields(mesh, objects, surfaceVectorFields); PtrList<surfaceSphericalTensorField> surfaceSphericalTensorFields; readFields(mesh, objects, surfaceSphericalTensorFields); PtrList<surfaceSymmTensorField> surfaceSymmTensorFields; readFields(mesh, objects, surfaceSymmTensorFields); PtrList<surfaceTensorField> surfaceTensorFields; readFields(mesh, objects, surfaceTensorFields); // Construct the point fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~ const pointMesh& pMesh = pointMesh::New(mesh); PtrList<pointScalarField> pointScalarFields; readFields(pMesh, objects, pointScalarFields); PtrList<pointVectorField> pointVectorFields; readFields(pMesh, objects, pointVectorFields); PtrList<pointSphericalTensorField> pointSphericalTensorFields; readFields(pMesh, objects, pointSphericalTensorFields); PtrList<pointSymmTensorField> pointSymmTensorFields; readFields(pMesh, objects, pointSymmTensorFields); PtrList<pointTensorField> pointTensorFields; readFields(pMesh, objects, pointTensorFields); // Construct the Lagrangian fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fileNameList cloudDirs ( fileHandler().readDir ( runTime.timePath()/cloud::prefix, fileType::directory ) ); // Particles PtrList<Cloud<indexedParticle>> lagrangianPositions ( cloudDirs.size() ); // Particles per cell PtrList<List<SLList<indexedParticle*>*>> cellParticles ( cloudDirs.size() ); PtrList<PtrList<labelIOField>> lagrangianLabelFields ( cloudDirs.size() ); PtrList<PtrList<labelFieldCompactIOField>> lagrangianLabelFieldFields ( cloudDirs.size() ); PtrList<PtrList<scalarIOField>> lagrangianScalarFields ( cloudDirs.size() ); PtrList<PtrList<scalarFieldCompactIOField>> lagrangianScalarFieldFields ( cloudDirs.size() ); PtrList<PtrList<vectorIOField>> lagrangianVectorFields ( cloudDirs.size() ); PtrList<PtrList<vectorFieldCompactIOField>> lagrangianVectorFieldFields ( cloudDirs.size() ); PtrList<PtrList<sphericalTensorIOField>> lagrangianSphericalTensorFields ( cloudDirs.size() ); PtrList<PtrList<sphericalTensorFieldCompactIOField>> lagrangianSphericalTensorFieldFields(cloudDirs.size()); PtrList<PtrList<symmTensorIOField>> lagrangianSymmTensorFields ( cloudDirs.size() ); PtrList<PtrList<symmTensorFieldCompactIOField>> lagrangianSymmTensorFieldFields ( cloudDirs.size() ); PtrList<PtrList<tensorIOField>> lagrangianTensorFields ( cloudDirs.size() ); PtrList<PtrList<tensorFieldCompactIOField>> lagrangianTensorFieldFields ( cloudDirs.size() ); label cloudI = 0; forAll(cloudDirs, i) { IOobjectList sprayObjs ( mesh, runTime.timeName(), cloud::prefix/cloudDirs[i], IOobject::MUST_READ, IOobject::NO_WRITE, false ); IOobject* positionsPtr = sprayObjs.lookup ( word("positions") ); if (positionsPtr) { // Read lagrangian particles // ~~~~~~~~~~~~~~~~~~~~~~~~~ Info<< "Identified lagrangian data set: " << cloudDirs[i] << endl; lagrangianPositions.set ( cloudI, new Cloud<indexedParticle> ( mesh, cloudDirs[i], false ) ); // Sort particles per cell // ~~~~~~~~~~~~~~~~~~~~~~~ cellParticles.set ( cloudI, new List<SLList<indexedParticle*>*> ( mesh.nCells(), static_cast<SLList<indexedParticle*>*>(nullptr) ) ); label i = 0; forAllIter ( Cloud<indexedParticle>, lagrangianPositions[cloudI], iter ) { iter().index() = i++; label celli = iter().cell(); // Check if (celli < 0 || celli >= mesh.nCells()) { FatalErrorInFunction << "Illegal cell number " << celli << " for particle with index " << iter().index() << " at position " << iter().position() << nl << "Cell number should be between 0 and " << mesh.nCells()-1 << nl << "On this mesh the particle should" << " be in cell " << mesh.findCell(iter().position()) << exit(FatalError); } if (!cellParticles[cloudI][celli]) { cellParticles[cloudI][celli] = new SLList<indexedParticle*>(); } cellParticles[cloudI][celli]->append(&iter()); } // Read fields // ~~~~~~~~~~~ IOobjectList lagrangianObjects ( mesh, runTime.timeName(), cloud::prefix/cloudDirs[cloudI], IOobject::MUST_READ, IOobject::NO_WRITE, false ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianLabelFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianLabelFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianScalarFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianScalarFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianVectorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianVectorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianSphericalTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianSphericalTensorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianSymmTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianSymmTensorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianTensorFieldFields ); cloudI++; } } lagrangianPositions.setSize(cloudI); cellParticles.setSize(cloudI); lagrangianLabelFields.setSize(cloudI); lagrangianLabelFieldFields.setSize(cloudI); lagrangianScalarFields.setSize(cloudI); lagrangianScalarFieldFields.setSize(cloudI); lagrangianVectorFields.setSize(cloudI); lagrangianVectorFieldFields.setSize(cloudI); lagrangianSphericalTensorFields.setSize(cloudI); lagrangianSphericalTensorFieldFields.setSize(cloudI); lagrangianSymmTensorFields.setSize(cloudI); lagrangianSymmTensorFieldFields.setSize(cloudI); lagrangianTensorFields.setSize(cloudI); lagrangianTensorFieldFields.setSize(cloudI); Info<< endl; // split the fields over processors for (label proci = 0; proci < mesh.nProcs(); proci++) { Info<< "Processor " << proci << ": field transfer" << endl; // open the database if (!processorDbList.set(proci)) { processorDbList.set ( proci, new Time ( Time::controlDictName, args.rootPath(), args.caseName() /fileName(word("processor") + name(proci)) ) ); } Time& processorDb = processorDbList[proci]; processorDb.setTime(runTime); // read the mesh if (!procMeshList.set(proci)) { procMeshList.set ( proci, new fvMesh ( IOobject ( regionName, processorDb.timeName(), processorDb ) ) ); } const fvMesh& procMesh = procMeshList[proci]; const labelIOList& faceProcAddressing = procAddressing ( procMeshList, proci, "faceProcAddressing", faceProcAddressingList ); const labelIOList& cellProcAddressing = procAddressing ( procMeshList, proci, "cellProcAddressing", cellProcAddressingList ); const labelIOList& boundaryProcAddressing = procAddressing ( procMeshList, proci, "boundaryProcAddressing", boundaryProcAddressingList ); // FV fields { if (!fieldDecomposerList.set(proci)) { fieldDecomposerList.set ( proci, new fvFieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing, boundaryProcAddressing ) ); } const fvFieldDecomposer& fieldDecomposer = fieldDecomposerList[proci]; fieldDecomposer.decomposeFields(volScalarFields); fieldDecomposer.decomposeFields(volVectorFields); fieldDecomposer.decomposeFields ( volSphericalTensorFields ); fieldDecomposer.decomposeFields(volSymmTensorFields); fieldDecomposer.decomposeFields(volTensorFields); fieldDecomposer.decomposeFields(surfaceScalarFields); fieldDecomposer.decomposeFields(surfaceVectorFields); fieldDecomposer.decomposeFields ( surfaceSphericalTensorFields ); fieldDecomposer.decomposeFields ( surfaceSymmTensorFields ); fieldDecomposer.decomposeFields(surfaceTensorFields); if (times.size() == 1) { // Clear cached decomposer fieldDecomposerList.set(proci, nullptr); } } // Dimensioned fields { if (!dimFieldDecomposerList.set(proci)) { dimFieldDecomposerList.set ( proci, new dimFieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing ) ); } const dimFieldDecomposer& dimDecomposer = dimFieldDecomposerList[proci]; dimDecomposer.decomposeFields(dimScalarFields); dimDecomposer.decomposeFields(dimVectorFields); dimDecomposer.decomposeFields(dimSphericalTensorFields); dimDecomposer.decomposeFields(dimSymmTensorFields); dimDecomposer.decomposeFields(dimTensorFields); if (times.size() == 1) { dimFieldDecomposerList.set(proci, nullptr); } } // Point fields if ( pointScalarFields.size() || pointVectorFields.size() || pointSphericalTensorFields.size() || pointSymmTensorFields.size() || pointTensorFields.size() ) { const labelIOList& pointProcAddressing = procAddressing ( procMeshList, proci, "pointProcAddressing", pointProcAddressingList ); const pointMesh& procPMesh = pointMesh::New(procMesh); if (!pointFieldDecomposerList.set(proci)) { pointFieldDecomposerList.set ( proci, new pointFieldDecomposer ( pMesh, procPMesh, pointProcAddressing, boundaryProcAddressing ) ); } const pointFieldDecomposer& pointDecomposer = pointFieldDecomposerList[proci]; pointDecomposer.decomposeFields(pointScalarFields); pointDecomposer.decomposeFields(pointVectorFields); pointDecomposer.decomposeFields ( pointSphericalTensorFields ); pointDecomposer.decomposeFields(pointSymmTensorFields); pointDecomposer.decomposeFields(pointTensorFields); if (times.size() == 1) { pointProcAddressingList.set(proci, nullptr); pointFieldDecomposerList.set(proci, nullptr); } } // If there is lagrangian data write it out forAll(lagrangianPositions, cloudI) { if (lagrangianPositions[cloudI].size()) { lagrangianFieldDecomposer fieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing, cloudDirs[cloudI], lagrangianPositions[cloudI], cellParticles[cloudI] ); // Lagrangian fields { fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianLabelFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianLabelFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianScalarFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianScalarFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianVectorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianVectorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianSphericalTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianSphericalTensorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianSymmTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianSymmTensorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianTensorFieldFields[cloudI] ); } } } // Decompose the "uniform" directory in the time region // directory decomposeUniform(copyUniform, mesh, processorDb, regionDir); // For the first region of a multi-region case additionally // decompose the "uniform" directory in the time directory if (regionNames.size() > 1 && regioni == 0) { decomposeUniform(copyUniform, mesh, processorDb); } // We have cached all the constant mesh data for the current // processor. This is only important if running with // multiple times, otherwise it is just extra storage. if (times.size() == 1) { boundaryProcAddressingList.set(proci, nullptr); cellProcAddressingList.set(proci, nullptr); faceProcAddressingList.set(proci, nullptr); procMeshList.set(proci, nullptr); processorDbList.set(proci, nullptr); } } } } } Info<< "\nEnd\n" << endl; return 0; } // ************************************************************************* // |
|
Your change assumes that the directory passed to `-case` is relative to the current working directory. If it is absolute, then `cwd()/caseName/dictPath` will be nonsense. Also, I don't think we want `-dict` to be relative to `-case`. I think that's confusing, and that it would better for them both to be handled as paths that are either absolute or relative to the current working directory. If we do that, then all that is needed is to add `dictPath.toAbsolute()` after the argument is read. |
|
Hi Will, thank you very much for your hint, very helpful. Please find attached a modified version of the working code and a script to test it. Kind regards, Federico decomposePar-2.C (46,251 bytes)
/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. Application decomposePar Description Automatically decomposes a mesh and fields of a case for parallel execution of OpenFOAM. Usage \b decomposePar [OPTION] Options: - \par -cellDist Write the cell distribution as a labelList, for use with 'manual' decomposition method or as a volScalarField for post-processing. - \par -region \<regionName\> \n Decompose named region. Does not check for existence of processor*. - \par -allRegions \n Decompose all regions in regionProperties. Does not check for existence of processor*. - \par -copyZero \n Copy \a 0 directory to processor* rather than decompose the fields. - \par -copyUniform \n Copy any \a uniform directories too. - \par -constant - \par -time xxx:yyy \n Override controlDict settings and decompose selected times. Does not re-decompose the mesh i.e. does not handle moving mesh or changing mesh cases. - \par -fields \n Use existing geometry decomposition and convert fields only. - \par -noSets \n Skip decomposing cellSets, faceSets, pointSets. - \par -force \n Remove any existing \a processor subdirectories before decomposing the geometry. - \par -ifRequired \n Only decompose the geometry if the number of domains has changed from a previous decomposition. No \a processor subdirectories will be removed unless the \a -force option is also specified. This option can be used to avoid redundant geometry decomposition (eg, in scripts), but should be used with caution when the underlying (serial) geometry or the decomposition method etc. have been changed between decompositions. - \par -dict \<filename\> Specify alternative dictionary for the decomposition. \*---------------------------------------------------------------------------*/ #include "OSspecific.H" #include "fvCFD.H" #include "IOobjectList.H" #include "domainDecomposition.H" #include "labelIOField.H" #include "labelFieldIOField.H" #include "scalarIOField.H" #include "scalarFieldIOField.H" #include "vectorIOField.H" #include "vectorFieldIOField.H" #include "sphericalTensorIOField.H" #include "sphericalTensorFieldIOField.H" #include "symmTensorIOField.H" #include "symmTensorFieldIOField.H" #include "tensorIOField.H" #include "tensorFieldIOField.H" #include "pointFields.H" #include "regionProperties.H" #include "readFields.H" #include "dimFieldDecomposer.H" #include "fvFieldDecomposer.H" #include "pointFieldDecomposer.H" #include "lagrangianFieldDecomposer.H" #include "decompositionModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { const labelIOList& procAddressing ( const PtrList<fvMesh>& procMeshList, const label proci, const word& name, PtrList<labelIOList>& procAddressingList ) { const fvMesh& procMesh = procMeshList[proci]; if (!procAddressingList.set(proci)) { procAddressingList.set ( proci, new labelIOList ( IOobject ( name, procMesh.facesInstance(), procMesh.meshSubDir, procMesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ) ) ); } return procAddressingList[proci]; } void decomposeUniform ( const bool copyUniform, const domainDecomposition& mesh, const Time& processorDb, const word& regionDir = word::null ) { const Time& runTime = mesh.time(); // Any uniform data to copy/link? const fileName uniformDir(regionDir/"uniform"); if (fileHandler().isDir(runTime.timePath()/uniformDir)) { Info<< "Detected additional non-decomposed files in " << runTime.timePath()/uniformDir << endl; const fileName timePath = fileHandler().filePath(processorDb.timePath()); if (copyUniform || mesh.distributed()) { if (!fileHandler().exists(timePath/uniformDir)) { fileHandler().cp ( runTime.timePath()/uniformDir, timePath/uniformDir ); } } else { // link with relative paths string parentPath = string("..")/".."; if (regionDir != word::null) { parentPath = parentPath/".."; } fileName currentDir(cwd()); chDir(timePath); if (!fileHandler().exists(uniformDir)) { fileHandler().ln ( parentPath/runTime.timeName()/uniformDir, uniformDir ); } chDir(currentDir); } } } } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { argList::addNote ( "decompose a mesh and fields of a case for parallel execution" ); argList::noParallel(); #include "addRegionOption.H" #include "addAllRegionsOption.H" argList::addBoolOption ( "cellDist", "write cell distribution as a labelList - for use with 'manual' " "decomposition method or as a volScalarField for post-processing." ); argList::addBoolOption ( "copyZero", "Copy \a 0 directory to processor* rather than decompose the fields" ); argList::addBoolOption ( "copyUniform", "copy any uniform/ directories too" ); argList::addBoolOption ( "fields", "use existing geometry decomposition and convert fields only" ); argList::addBoolOption ( "noFields", "opposite of -fields; only decompose geometry" ); argList::addBoolOption ( "noSets", "skip decomposing cellSets, faceSets, pointSets" ); argList::addBoolOption ( "force", "remove existing processor*/ subdirs before decomposing the geometry" ); argList::addBoolOption ( "ifRequired", "only decompose geometry if the number of domains has changed" ); argList::addOption ( "dict", "dictionary file name", "specify alternative decomposition dictionary" ); // Include explicit constant options, have zero from time range timeSelector::addOptions(true, false); #include "setRootCase.H" bool region = args.optionFound("region"); bool writeCellDist = args.optionFound("cellDist"); bool copyZero = args.optionFound("copyZero"); bool copyUniform = args.optionFound("copyUniform"); bool decomposeFieldsOnly = args.optionFound("fields"); bool decomposeGeomOnly = args.optionFound("noFields"); bool decomposeSets = !args.optionFound("noSets"); bool forceOverwrite = args.optionFound("force"); bool ifRequiredDecomposition = args.optionFound("ifRequired"); const word dictName("decomposeParDict"); if (decomposeGeomOnly) { Info<< "Skipping decomposing fields" << nl << endl; if (decomposeFieldsOnly || copyZero) { FatalErrorInFunction << "Cannot combine geometry-only decomposition (-noFields)" << " with field decomposition (-noFields or -copyZero)" << exit(FatalError); } } // Set time from database #include "createTime.H" // Check if the dictionary is specified on the command-line fileName dictPath = fileName::null; if (args.optionFound("dict")) { dictPath = args["dict"]; dictPath.toAbsolute(); dictPath = ( isFile(dictPath) ? dictPath : dictPath/dictName ); } else { dictPath = runTime.system()/dictName; } // Allow override of time instantList times = timeSelector::selectIfPresent(runTime, args); const wordList regionNames(selectRegionNames(args, runTime)); { // Determine the existing processor count directly label nProcs = fileHandler().nProcs(runTime.path()); if (forceOverwrite) { if (region) { FatalErrorInFunction << "Cannot force the decomposition of a single region" << exit(FatalError); } Info<< "Removing " << nProcs << " existing processor directories" << endl; // Remove existing processors directory fileNameList dirs ( fileHandler().readDir ( runTime.path(), fileType::directory ) ); forAllReverse(dirs, diri) { const fileName& d = dirs[diri]; // Starts with 'processors' if (d.find("processors") == 0) { if (fileHandler().exists(d)) { fileHandler().rmDir(d); } } // Starts with 'processor' if (d.find("processor") == 0) { // Check that integer after processor fileName num(d.substr(9)); label proci = -1; if (Foam::read(num.c_str(), proci)) { if (fileHandler().exists(d)) { fileHandler().rmDir(d); } } } } } else if (nProcs && !region && !decomposeFieldsOnly) { FatalErrorInFunction << "Case is already decomposed with " << nProcs << " domains, use the -force option or manually" << nl << "remove processor directories before decomposing. e.g.," << nl << " rm -rf " << runTime.path().c_str() << "/processor*" << nl << exit(FatalError); } } forAll(regionNames, regioni) { const word& regionName = regionNames[regioni]; const word& regionDir = Foam::regionDir(regionName); Info<< "\n\nDecomposing mesh " << regionName << nl << endl; // Determine the existing processor count directly label nProcs = fileHandler().nProcs(runTime.path(), regionDir); // Get the dictionary IO const IOobject dictIO ( dictPath == fileName::null ? IOobject ( dictName, runTime.time().system(), regionDir, // use region if non-standard runTime, IOobject::MUST_READ_IF_MODIFIED, IOobject::NO_WRITE, false ) : IOobject ( dictPath, runTime, IOobject::MUST_READ_IF_MODIFIED, IOobject::NO_WRITE, false ) ); // Get requested numberOfSubdomains. Note: have no mesh yet so // cannot use decompositionModel::New const label nDomains = IOdictionary(dictIO).lookup<label>("numberOfSubdomains"); // Give file handler a chance to determine the output directory const_cast<fileOperation&>(fileHandler()).setNProcs(nDomains); if (decomposeFieldsOnly) { // Sanity check on previously decomposed case if (nProcs != nDomains) { FatalErrorInFunction << "Specified -fields, but the case was decomposed with " << nProcs << " domains" << nl << "instead of " << nDomains << " domains as specified in " << dictName << nl << exit(FatalError); } } else if (nProcs) { if (ifRequiredDecomposition && nProcs == nDomains) { // Reuse the decomposition decomposeFieldsOnly = true; Info<< "Using existing processor directories" << nl; } } Info<< "Create mesh" << endl; domainDecomposition mesh ( IOobject ( regionName, runTime.timeName(), runTime, IOobject::NO_READ, IOobject::NO_WRITE, false ), dictIO.objectPath() ); // Decompose the mesh if (!decomposeFieldsOnly) { mesh.decomposeMesh(dictIO.objectPath()); mesh.writeDecomposition(decomposeSets); if (writeCellDist) { const labelList& procIds = mesh.cellToProc(); // Write the decomposition as labelList for use with 'manual' // decomposition method. labelIOList cellDecomposition ( IOobject ( "cellDecomposition", mesh.facesInstance(), mesh, IOobject::NO_READ, IOobject::NO_WRITE, false ), procIds ); cellDecomposition.write(); Info<< nl << "Wrote decomposition to " << cellDecomposition.localObjectPath() << " for use in manual decomposition." << endl; // Write as volScalarField for postprocessing. volScalarField cellDist ( IOobject ( "cellDist", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh, dimensionedScalar(dimless, 0) ); forAll(procIds, celli) { cellDist[celli] = procIds[celli]; } cellDist.write(); Info<< nl << "Wrote decomposition as volScalarField to " << cellDist.name() << " for use in postprocessing." << endl; } fileHandler().flush(); } if (copyZero) { // Copy the 0 directory into each of the processor directories fileName prevTimePath; for (label proci = 0; proci < mesh.nProcs(); proci++) { Time processorDb ( Time::controlDictName, args.rootPath(), args.caseName()/fileName(word("processor") + name(proci)) ); processorDb.setTime(runTime); if (fileHandler().isDir(runTime.timePath())) { // Get corresponding directory name (to handle processors/) const fileName timePath ( fileHandler().objectPath ( IOobject ( "", processorDb.timeName(), processorDb ), word::null ) ); if (timePath != prevTimePath) { Info<< "Processor " << proci << ": copying " << runTime.timePath() << nl << " to " << timePath << endl; fileHandler().cp(runTime.timePath(), timePath); prevTimePath = timePath; } } } } else if (!decomposeGeomOnly) { // Decompose the field files // Cached processor meshes and maps. These are only preserved if // running with multiple times. PtrList<Time> processorDbList(mesh.nProcs()); PtrList<fvMesh> procMeshList(mesh.nProcs()); PtrList<labelIOList> faceProcAddressingList(mesh.nProcs()); PtrList<labelIOList> cellProcAddressingList(mesh.nProcs()); PtrList<labelIOList> boundaryProcAddressingList(mesh.nProcs()); PtrList<fvFieldDecomposer> fieldDecomposerList(mesh.nProcs()); PtrList<dimFieldDecomposer> dimFieldDecomposerList(mesh.nProcs()); PtrList<labelIOList> pointProcAddressingList(mesh.nProcs()); PtrList<pointFieldDecomposer> pointFieldDecomposerList ( mesh.nProcs() ); // Loop over all times forAll(times, timeI) { runTime.setTime(times[timeI], timeI); Info<< "Time = " << runTime.timeName() << endl; // Search for list of objects for this time IOobjectList objects(mesh, runTime.timeName()); // Construct the vol fields // ~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<volScalarField> volScalarFields; readFields(mesh, objects, volScalarFields); PtrList<volVectorField> volVectorFields; readFields(mesh, objects, volVectorFields); PtrList<volSphericalTensorField> volSphericalTensorFields; readFields(mesh, objects, volSphericalTensorFields); PtrList<volSymmTensorField> volSymmTensorFields; readFields(mesh, objects, volSymmTensorFields); PtrList<volTensorField> volTensorFields; readFields(mesh, objects, volTensorFields); // Construct the dimensioned fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<DimensionedField<scalar, volMesh>> dimScalarFields; readFields(mesh, objects, dimScalarFields); PtrList<DimensionedField<vector, volMesh>> dimVectorFields; readFields(mesh, objects, dimVectorFields); PtrList<DimensionedField<sphericalTensor, volMesh>> dimSphericalTensorFields; readFields(mesh, objects, dimSphericalTensorFields); PtrList<DimensionedField<symmTensor, volMesh>> dimSymmTensorFields; readFields(mesh, objects, dimSymmTensorFields); PtrList<DimensionedField<tensor, volMesh>> dimTensorFields; readFields(mesh, objects, dimTensorFields); // Construct the surface fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PtrList<surfaceScalarField> surfaceScalarFields; readFields(mesh, objects, surfaceScalarFields); PtrList<surfaceVectorField> surfaceVectorFields; readFields(mesh, objects, surfaceVectorFields); PtrList<surfaceSphericalTensorField> surfaceSphericalTensorFields; readFields(mesh, objects, surfaceSphericalTensorFields); PtrList<surfaceSymmTensorField> surfaceSymmTensorFields; readFields(mesh, objects, surfaceSymmTensorFields); PtrList<surfaceTensorField> surfaceTensorFields; readFields(mesh, objects, surfaceTensorFields); // Construct the point fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~ const pointMesh& pMesh = pointMesh::New(mesh); PtrList<pointScalarField> pointScalarFields; readFields(pMesh, objects, pointScalarFields); PtrList<pointVectorField> pointVectorFields; readFields(pMesh, objects, pointVectorFields); PtrList<pointSphericalTensorField> pointSphericalTensorFields; readFields(pMesh, objects, pointSphericalTensorFields); PtrList<pointSymmTensorField> pointSymmTensorFields; readFields(pMesh, objects, pointSymmTensorFields); PtrList<pointTensorField> pointTensorFields; readFields(pMesh, objects, pointTensorFields); // Construct the Lagrangian fields // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fileNameList cloudDirs ( fileHandler().readDir ( runTime.timePath()/cloud::prefix, fileType::directory ) ); // Particles PtrList<Cloud<indexedParticle>> lagrangianPositions ( cloudDirs.size() ); // Particles per cell PtrList<List<SLList<indexedParticle*>*>> cellParticles ( cloudDirs.size() ); PtrList<PtrList<labelIOField>> lagrangianLabelFields ( cloudDirs.size() ); PtrList<PtrList<labelFieldCompactIOField>> lagrangianLabelFieldFields ( cloudDirs.size() ); PtrList<PtrList<scalarIOField>> lagrangianScalarFields ( cloudDirs.size() ); PtrList<PtrList<scalarFieldCompactIOField>> lagrangianScalarFieldFields ( cloudDirs.size() ); PtrList<PtrList<vectorIOField>> lagrangianVectorFields ( cloudDirs.size() ); PtrList<PtrList<vectorFieldCompactIOField>> lagrangianVectorFieldFields ( cloudDirs.size() ); PtrList<PtrList<sphericalTensorIOField>> lagrangianSphericalTensorFields ( cloudDirs.size() ); PtrList<PtrList<sphericalTensorFieldCompactIOField>> lagrangianSphericalTensorFieldFields(cloudDirs.size()); PtrList<PtrList<symmTensorIOField>> lagrangianSymmTensorFields ( cloudDirs.size() ); PtrList<PtrList<symmTensorFieldCompactIOField>> lagrangianSymmTensorFieldFields ( cloudDirs.size() ); PtrList<PtrList<tensorIOField>> lagrangianTensorFields ( cloudDirs.size() ); PtrList<PtrList<tensorFieldCompactIOField>> lagrangianTensorFieldFields ( cloudDirs.size() ); label cloudI = 0; forAll(cloudDirs, i) { IOobjectList sprayObjs ( mesh, runTime.timeName(), cloud::prefix/cloudDirs[i], IOobject::MUST_READ, IOobject::NO_WRITE, false ); IOobject* positionsPtr = sprayObjs.lookup ( word("positions") ); if (positionsPtr) { // Read lagrangian particles // ~~~~~~~~~~~~~~~~~~~~~~~~~ Info<< "Identified lagrangian data set: " << cloudDirs[i] << endl; lagrangianPositions.set ( cloudI, new Cloud<indexedParticle> ( mesh, cloudDirs[i], false ) ); // Sort particles per cell // ~~~~~~~~~~~~~~~~~~~~~~~ cellParticles.set ( cloudI, new List<SLList<indexedParticle*>*> ( mesh.nCells(), static_cast<SLList<indexedParticle*>*>(nullptr) ) ); label i = 0; forAllIter ( Cloud<indexedParticle>, lagrangianPositions[cloudI], iter ) { iter().index() = i++; label celli = iter().cell(); // Check if (celli < 0 || celli >= mesh.nCells()) { FatalErrorInFunction << "Illegal cell number " << celli << " for particle with index " << iter().index() << " at position " << iter().position() << nl << "Cell number should be between 0 and " << mesh.nCells()-1 << nl << "On this mesh the particle should" << " be in cell " << mesh.findCell(iter().position()) << exit(FatalError); } if (!cellParticles[cloudI][celli]) { cellParticles[cloudI][celli] = new SLList<indexedParticle*>(); } cellParticles[cloudI][celli]->append(&iter()); } // Read fields // ~~~~~~~~~~~ IOobjectList lagrangianObjects ( mesh, runTime.timeName(), cloud::prefix/cloudDirs[cloudI], IOobject::MUST_READ, IOobject::NO_WRITE, false ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianLabelFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianLabelFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianScalarFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianScalarFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianVectorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianVectorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianSphericalTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianSphericalTensorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianSymmTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianSymmTensorFieldFields ); lagrangianFieldDecomposer::readFields ( cloudI, lagrangianObjects, lagrangianTensorFields ); lagrangianFieldDecomposer::readFieldFields ( cloudI, lagrangianObjects, lagrangianTensorFieldFields ); cloudI++; } } lagrangianPositions.setSize(cloudI); cellParticles.setSize(cloudI); lagrangianLabelFields.setSize(cloudI); lagrangianLabelFieldFields.setSize(cloudI); lagrangianScalarFields.setSize(cloudI); lagrangianScalarFieldFields.setSize(cloudI); lagrangianVectorFields.setSize(cloudI); lagrangianVectorFieldFields.setSize(cloudI); lagrangianSphericalTensorFields.setSize(cloudI); lagrangianSphericalTensorFieldFields.setSize(cloudI); lagrangianSymmTensorFields.setSize(cloudI); lagrangianSymmTensorFieldFields.setSize(cloudI); lagrangianTensorFields.setSize(cloudI); lagrangianTensorFieldFields.setSize(cloudI); Info<< endl; // split the fields over processors for (label proci = 0; proci < mesh.nProcs(); proci++) { Info<< "Processor " << proci << ": field transfer" << endl; // open the database if (!processorDbList.set(proci)) { processorDbList.set ( proci, new Time ( Time::controlDictName, args.rootPath(), args.caseName() /fileName(word("processor") + name(proci)) ) ); } Time& processorDb = processorDbList[proci]; processorDb.setTime(runTime); // read the mesh if (!procMeshList.set(proci)) { procMeshList.set ( proci, new fvMesh ( IOobject ( regionName, processorDb.timeName(), processorDb ) ) ); } const fvMesh& procMesh = procMeshList[proci]; const labelIOList& faceProcAddressing = procAddressing ( procMeshList, proci, "faceProcAddressing", faceProcAddressingList ); const labelIOList& cellProcAddressing = procAddressing ( procMeshList, proci, "cellProcAddressing", cellProcAddressingList ); const labelIOList& boundaryProcAddressing = procAddressing ( procMeshList, proci, "boundaryProcAddressing", boundaryProcAddressingList ); // FV fields { if (!fieldDecomposerList.set(proci)) { fieldDecomposerList.set ( proci, new fvFieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing, boundaryProcAddressing ) ); } const fvFieldDecomposer& fieldDecomposer = fieldDecomposerList[proci]; fieldDecomposer.decomposeFields(volScalarFields); fieldDecomposer.decomposeFields(volVectorFields); fieldDecomposer.decomposeFields ( volSphericalTensorFields ); fieldDecomposer.decomposeFields(volSymmTensorFields); fieldDecomposer.decomposeFields(volTensorFields); fieldDecomposer.decomposeFields(surfaceScalarFields); fieldDecomposer.decomposeFields(surfaceVectorFields); fieldDecomposer.decomposeFields ( surfaceSphericalTensorFields ); fieldDecomposer.decomposeFields ( surfaceSymmTensorFields ); fieldDecomposer.decomposeFields(surfaceTensorFields); if (times.size() == 1) { // Clear cached decomposer fieldDecomposerList.set(proci, nullptr); } } // Dimensioned fields { if (!dimFieldDecomposerList.set(proci)) { dimFieldDecomposerList.set ( proci, new dimFieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing ) ); } const dimFieldDecomposer& dimDecomposer = dimFieldDecomposerList[proci]; dimDecomposer.decomposeFields(dimScalarFields); dimDecomposer.decomposeFields(dimVectorFields); dimDecomposer.decomposeFields(dimSphericalTensorFields); dimDecomposer.decomposeFields(dimSymmTensorFields); dimDecomposer.decomposeFields(dimTensorFields); if (times.size() == 1) { dimFieldDecomposerList.set(proci, nullptr); } } // Point fields if ( pointScalarFields.size() || pointVectorFields.size() || pointSphericalTensorFields.size() || pointSymmTensorFields.size() || pointTensorFields.size() ) { const labelIOList& pointProcAddressing = procAddressing ( procMeshList, proci, "pointProcAddressing", pointProcAddressingList ); const pointMesh& procPMesh = pointMesh::New(procMesh); if (!pointFieldDecomposerList.set(proci)) { pointFieldDecomposerList.set ( proci, new pointFieldDecomposer ( pMesh, procPMesh, pointProcAddressing, boundaryProcAddressing ) ); } const pointFieldDecomposer& pointDecomposer = pointFieldDecomposerList[proci]; pointDecomposer.decomposeFields(pointScalarFields); pointDecomposer.decomposeFields(pointVectorFields); pointDecomposer.decomposeFields ( pointSphericalTensorFields ); pointDecomposer.decomposeFields(pointSymmTensorFields); pointDecomposer.decomposeFields(pointTensorFields); if (times.size() == 1) { pointProcAddressingList.set(proci, nullptr); pointFieldDecomposerList.set(proci, nullptr); } } // If there is lagrangian data write it out forAll(lagrangianPositions, cloudI) { if (lagrangianPositions[cloudI].size()) { lagrangianFieldDecomposer fieldDecomposer ( mesh, procMesh, faceProcAddressing, cellProcAddressing, cloudDirs[cloudI], lagrangianPositions[cloudI], cellParticles[cloudI] ); // Lagrangian fields { fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianLabelFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianLabelFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianScalarFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianScalarFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianVectorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianVectorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianSphericalTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianSphericalTensorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianSymmTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianSymmTensorFieldFields[cloudI] ); fieldDecomposer.decomposeFields ( cloudDirs[cloudI], lagrangianTensorFields[cloudI] ); fieldDecomposer.decomposeFieldFields ( cloudDirs[cloudI], lagrangianTensorFieldFields[cloudI] ); } } } // Decompose the "uniform" directory in the time region // directory decomposeUniform(copyUniform, mesh, processorDb, regionDir); // For the first region of a multi-region case additionally // decompose the "uniform" directory in the time directory if (regionNames.size() > 1 && regioni == 0) { decomposeUniform(copyUniform, mesh, processorDb); } // We have cached all the constant mesh data for the current // processor. This is only important if running with // multiple times, otherwise it is just extra storage. if (times.size() == 1) { boundaryProcAddressingList.set(proci, nullptr); cellProcAddressingList.set(proci, nullptr); faceProcAddressingList.set(proci, nullptr); procMeshList.set(proci, nullptr); processorDbList.set(proci, nullptr); } } } } } Info<< "\nEnd\n" << endl; return 0; } // ************************************************************************* // Allrun.test (1,238 bytes)
#!/bin/sh cd ${0%/*} || exit 1 # Run from this directory # Source tutorial run functions . $WM_PROJECT_DIR/bin/tools/RunFunctions workDir=$FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak cd $workDir ./Allclean; rm -f log* cp $workDir/damBreak/system/decomposeParDict $workDir/damBreak/system/decomposeParDict.test runApplication blockMesh -case damBreak runApplication setFields -case damBreak runApplication -s 1 decomposePar -case damBreak -dict damBreak/system/decomposeParDict -force runApplication -s 2 decomposePar -case damBreak -dict damBreak/system/decomposeParDict.test -force runApplication -s 3 decomposePar -case damBreak -dict $workDir/damBreak/system/decomposeParDict.test -force runApplication -s 4 decomposePar -case $workDir/damBreak -dict damBreak/system/decomposeParDict -force runApplication -s 5 decomposePar -case $workDir/damBreak -dict damBreak/system/decomposeParDict.test -force runApplication -s 6 decomposePar -case $workDir/damBreak -dict $workDir/damBreak/system/decomposeParDict.test -force cd damBreak runApplication -s 7 decomposePar -force runApplication -s 8 decomposePar -dict system/decomposeParDict -force runApplication -s 9 decomposePar -dict system/decomposeParDict.test -force |
|
Thanks, but I'm afraid this affects more than just decomposePar. The logic needs to be centralised and made consistent across a bunch of applications. There is some of this implemented in `systemDict`, but it needs extending to handle `-case` and to do the `isDir` stuff correctly. I'm working on it now. |
|
Looking at the rest of the code, it seems to be standard that if -dict has a relative path then that path is taken to be from the case directory. If -dict is absolute, then it's just an absolute path. That wasn't my initial assumption, but it's fine as a convention as log as it's applied consistently. So, I've enforced that everywhere. I've extended the systemDict stuff and it's now handling all -dict options in all executables. It should all be correct now. https://github.com/OpenFOAM/OpenFOAM-dev/commit/c63c1a90c2d5c4dcdc24f79aacb8b81740066ebc Your test script won't work because it's assuming relative paths relative to the working directory, not the case directory. You don't need "damBreak" at the start of the relative paths (the ones without $workDir). If you remove these then it runs. |
Date Modified | Username | Field | Change |
---|---|---|---|
2021-07-02 08:41 | fede | New Issue | |
2021-07-02 08:41 | fede | File Added: decomposePar.C | |
2021-07-02 09:49 | will | Note Added: 0012075 | |
2021-07-02 12:06 | fede | File Added: decomposePar-2.C | |
2021-07-02 12:06 | fede | File Added: Allrun.test | |
2021-07-02 12:06 | fede | Note Added: 0012076 | |
2021-07-02 12:27 | will | Note Added: 0012077 | |
2021-07-02 15:14 | will | Assigned To | => will |
2021-07-02 15:14 | will | Status | new => resolved |
2021-07-02 15:14 | will | Resolution | open => fixed |
2021-07-02 15:14 | will | Fixed in Version | => dev |
2021-07-02 15:14 | will | Note Added: 0012078 |