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The Crank-Nicolson temporal discretization scheme can be viewed as summa-
tion of implicit and explicit Euler discretization schemes.

For any variable φ, let assume the linear system for the partial differential
equation is written as:

∂φ

∂t
= S(φ), (1)

where S is the spatial discretization operator.

The temporal derivatives can discretized as :
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Explicit Euler
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Adding equations 2 and 4, we get
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Final form of the discretization becomes:
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]
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The temporal term is similar to the implicit Euler scheme, and key difference is
in semi implicit treatment of the spatial operators.
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