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The Crank-Nicolson temporal discretization scheme can be viewed as summa-
tion of implicit and explicit Euler discretization schemes.

For any variable ¢, let assume the linear system for the partial differential
equation is written as:
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where S is the spatial discretization operator.
The temporal derivatives can discretized as :

Implicit Euler
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Adding equations 2 and 4, we get
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Final form of the discretization becomes:

¢t+1 — (bt _ 1 [S(¢t+1) + S(Qj)t)] (4)
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The temporal term is similar to the implicit Euler scheme, and key difference is

in semi implicit treatment of the spatial operators.



