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During a severe nuclear reactor accident, large amounts of hydrogen, steam and other non-condensable
gases are released into the reactor containment. Hydrogen gas can accumulate in significant proportions
in some parts of the containment, and subsequent hydrogen combustion (like in Fukushima Daiichi NPP)
may result in structural failures, which may allow the release of harmful radioactive material into the
environment. Hence, it becomes essential to predict hydrogen and steam distribution in containment for
the design and assessment of effective hydrogen mitigation methods. Ongoing work at Forschungszentrum
Juelich aims at developing a dedicated solver ’containmentFOAM’ which has the capabilities to handle
multi-species turbulent gas transport, conjugate heat transfer, aerosol/particle transport, and radiative
heat transfer. The ’reactingParcelFoam’ solver available in OpenFOAM-6 is chosen as the base solver for
’containmentFOAM’. Multi-species gas transport is the focus of this paper. In the application mentioned
above, gas mixing phenomenon occurs among gases with significant difference in specific enthalpies
(Cp of H2 = 14.32 kJ/kg.K, Cp of Air = 1.01 kJ/kg.K, CP of H2O = 1.864 kJ/kg.K). The base
solver has deficiencies in modeling such multi-species gas transport phenomenon and produces incorrect
temperature field even on isothermal cases. Incorrect enthalpy transport equation results in a wrong
temperature field and hence an incorrect density field, eventually leading to solver instability and poor
results. The energy equation was modified to account for (i) enthalpy transport due to inter-species
diffusion (ii) varying specific enthalpy values of different species. The overall solver stability is improved
by introducing an additional density corrector step in PIMPLE algorithm. The paper discusses the
successive modifications and highlights their effects systematically based on simple 1D cases. Finally,
the general applicability of the solver is demonstrated on a 2D mixing layer case.

1 Background and Motivation

During a severe accident in water-cooled nuclear
power plants, large amounts of hydrogen and steam
are released into the reactor containment building.
Hydrogen so released can accumulate in flammable
proportions in certain parts of the containment and
eventually result in combustion (like in Fukushima
Daiichi NPP). This may challenge the structural in-
tegrity of the containment and may result in release
of harmful radioactive materials to the outside en-
vironment affecting civilian life in the vicinity of the
power plant. To have effective hydrogen mitigation
methods, simulation tools to predict the hydrogen
gas distribution in severe accident scenarios are nec-

essary.
Since several years CFD models, mostly based on
commercial CFD codes [6, 7] are used to predict
hydrogen gas distribution and mixing in a contain-
ment in severe accident scenarios. In recent times,
the open source CFD code OpenFOAM is gaining
attention among users in industry and academia
alike. OpenFOAM has seriously improved in the re-
cent years with respect to increased choice of mod-
els and robust numerical schemes. The most attrac-
tive feature of OpenFOAM is the complete source
code accessibility because this permits for continu-
ous improvement of the existing models.
Though OpenFOAM is getting popular in Nuclear
safety research field, all the works seems to be tar-



geted towards specific phenomena only. A dedi-
cated solver which can perform an integral anal-
ysis of a severe accident sequence is not available
at the moment. For instance, in the fire safety re-
search field there is a dedicated solver called as ’fire-
FOAM’, developed by FM Global aims at modeling
fire spreading and suppression. It comprises robust
models for the analysis of turbulent combustible
gas and smoke transport, pyrolysis, combustion,
thermal radiation, sprinklers and fire suppression
systems [8]. It is successfully used to disseminate
knowledge and thus ensure improved mitigation
concept design and safety concepts. Taking a cue
from ’fireFOAM’, ongoing work at Forschungzen-
trum Juelich aims to develop and validate a tai-
lored solver ’containmentFOAM’ along with rele-
vant model libraries to analyse the different sce-
narios that may arise during a severe accident in a
nuclear reactor containment.
The ’containmentFoam’ solver is developed to han-
dle multicomponent gas mixing, conjugate heat
transfer along with thermal radiation heat trans-
fer and steam condensation. Supplementary li-
braries are developed to handle radioactive nuclear
aerosol transport. This paper discusses the details
of the ’containmentFOAM’ solver development only
within the purview of multicomponent gas mixing.
The ’reactingParcelFoam’ (RPF) solver available
in OpenFOAM-6 is chosen as the base solver for
’containmentFOAM’ because it has the capability
to handle multicomponent gas transport and heat
transfer. It is also well integrated with libraries
to compute aerosol transport and thermal radia-
tion phenomenon. In section 2, the governing equa-
tions used to model multicomponent gas flows are
summarized. The deficiencies present in the gov-
erning equations of the base solver are identified
and suitable corrections are made to ’containment-
Foam’ solver. In section 3, the algorithm present in
the ’containmentFoam’ solver is discussed in detail.
In section 4, the base solver instability is identi-
fied and is mainly caused due to incorrect equations
and deficiency present in the PIMPLE iterative al-
gorithm. In section 5, a series of systematic test
cases are discussed by isolating the individual phe-
nomena present in multicomponent gas flows such
as (i) binary diffusion (ii) heat conduction and (iii)
convective transport. Finally, the correctness of the
’containmentFoam’ solver is finally verified by sim-
ulating a two dimensional mixing channel test case
where all the three major phenomena coexist along
with turbulence.

2 Governing Equations

2.1 Mass conservation equations

2.1.1 Species mass conservation

If there are n species of gases in the multicom-
ponent system, the species mass conservation for
specie i can be written as

∂ρi
∂t

+∇ · (ρiU) = −∇ · Fi, i ∈ S (1)

where ρi is the mass density of specie i, U is the
mass averaged flow velocity, Fi is the diffusion flux
of the ith specie and S is the set of the gas species
indices given by S = {1, 2, ....., n}.
The species mass fractions Yi, i ∈ S are defined by,

Yi =
ρi
ρ
, i ∈ S (2)

where ρ is the total density given by

ρ =
∑
i∈S

ρi (3)

Due to Eqn. 3, the species mass fractions Yi satisfy
the condition, ∑

i∈S
Yi = 1 (4)

The species mass conservation equation (Eqn.1)
can be rewritten in terms of the species mass frac-
tions as

∂ (ρYi)

∂t
+∇ · (ρUYi) = −∇ · Fi, i ∈ S (5)

where Fi is the diffusive flux of specie i given by

Fi = −ρDi∇Yi (6)

where Di is the effective molecular diffusivity of the
specie i in the multi-component gas medium. Since
the present discussion is restricted to two species,

Di = D12 (7)

where D12 is the binary diffusivity of two gas
species calculated in accordance with the Fuller
model [2].
However, in the RPF solver, the kinematic viscosity
ν is used instead of the effective molecular diffusiv-
ity Di.

2.1.2 Total mass conservation

The n species mass conservation equations can be
summed to derive the total mass conservation equa-
tion in terms of total density.∑
i∈S

∂ (ρYi)

∂t
+
∑
i∈S
∇· (ρUYi) = −

∑
i∈S
∇·Fi, i ∈ S

(8)



The diffusive flux Fi is only due to motion of the
gas molecules and there should not be any net bulk
flow caused to diffusion i.e. the sum of diffusive
mass fluxes should go to zero.∑

i∈S
Fi = 0 (9)

From the relations in Eqn.4 and Eqn.9, the total
mass conservation equation (Eqn.8) becomes

∂ρ

∂t
+∇ · (ρU) = 0 (10)

2.1.3 Methods to solve the mass conservation
equations

It must be noted that the n species mass conser-
vation equations (Eqn.5) and the total mass con-
servation equation (Eqn.10) are linearly dependent.
Hence, it is only possible to either solve for n species
mass conservation equations with the unknowns
(Y1, Y2...., Yn) or solve the total mass conservation
equation along with the species mass conservation
equations for n − 1 species with the unknowns
(ρ, Y1, Y2, ...., Yn−1) and evaluate the species mass
fraction of nth specie Yn by imposing the constraint
in Eqn.8 as

Yn = 1−
∑
i 6=n

Yi (11)

The latter method is used in the RPF solver as well
[3].

2.1.4 Gas mixture properties

The gas mixture properties such as dynamic vis-
cosity (µ), specific heat capacity (Cp) and thermal
diffusivity (α) are calculated by assuming an ideal
mixture relation. Any arbitrary mixture property
φ can be computed from the specie properties φi
and specie mass fractions Yi, i ∈ S.

φ =
∑
i∈S

Yiφi (12)

2.2 Momentum conservation equation

The momentum conservation equation to evaluate
the average flow velocity U is given by

∂ (ρU)

∂t
+∇ · (ρU⊗U) = −∇p+∇ · τ + ρg (13)

where τ is the viscous stress tensor, p is the pressure
and g is the acceleration due to gravity. The viscous
stress tensor is given by

τ = ρν

[
∇U + (∇U)T − 2

3
δ∇ ·U

]
(14)

where ν is the kinematic viscosity of the gas mixture
and δ is the Kronecker delta.

2.3 Energy conservation equation

The energy equation implemented in the RPF
solver is in the total enthalpy form (Eqn.15). From
here on, the enthalpy and kinetic energy men-
tioned correspond to the specific properties (per
unit mass) only. The source terms due to radiation
and particles are irrelevant for the present work and
hence a discussion on them is ignored here.

∂(ρh)

∂t
+∇ · (ρUh) +

∂(ρK)

∂t
+∇ · (ρUK) =

∂p

∂t
+ ρU · g −∇ ·Q−∇ ·

n∑
i=1

Fihi

(15)
All the terms in the LHS together constitute the

material derivative of total enthalpy htot defined by

htot = h+K (16)

where h is the static enthalpy, K is the total ki-
netic energy and Q is the conductive heat flux. K
is defined by

K =
|U|2

2
(17)

The first and second terms in the LHS of the
energy equation (Eqn.15) correspond to the ma-
terial derivatives of static enthalpy. Since, static
enthalpy h is the unknown, these terms are implicit
i.e. fvm terms in OpenFOAM parlance. The third
and fourth terms in the LHS is to account for the
material derivative of total kinetic energy K and
are treated as explicit terms i.e fvc. The first and
second terms in the RHS of the energy equation
accounts for the rate of change of total enthalpy
due to the rate of change of pressure and rate of
change of potential energy respectively. The third
term in the RHS represents the heat conduction
term due to temperature gradients.

2.3.1 Heat conduction

The third term in the RHS of the energy equation
(Eqn.15) represents the contribution of heat con-
duction. Two formulations QT and Qh of the con-
ductive heat flux Q are considered. According to
Fourier’s law of heat conduction, the heat flux QT

is defined in terms of gradient of temperature as

QT = −λ∇T (18)

where λ is the thermal conductivity of the gas mix-
ture. But in the RPF solver, Q is implemented in
terms of gradient of static enthalpy as

Qh = −α∇h (19)

where α is the thermal diffusivity of the gas mix-
ture. α and λ are related by

α =
λ

Cp
(20)



where Cp is the specific heat capacity of the gas
mixture at constant pressure.
The two formulation QT and Qh are not identical.
The enthalpy of the gas mixture h in terms of specie
enthalpies hi, i ∈ S is

h =

n∑
i=1

hiYi (21)

The static enthalpy of an ideal gas specie i is defined
by

hi = href,i +

∫ T

Tref

Cp,idT (22)

where href,i is the enthalpy of formation of the
specie i at reference temperature Tref and Cp,i is
the specific heat capacity of the gas specie i at con-
stant pressure. In the present work only sensible
enthalpy formulation is used (href,i=0) and the ref-
erence temperature is absolute zero (Tref=0). If
the ideal gas assumption is made, Cp,i is only a
function of temperature.
Eqn.22 becomes

hi =

∫ T

0

Cp,idT (23)

On evaluation of gradient of enthalpy ∇h,

∇h =

n∑
i=1

∇ (hiYi)

=

n∑
i=1

hi∇Yi +

n∑
i=1

Yi∇hi

(24)

Consider only ∇hi term in index notation.

∇hi =
∂hi
∂xj

êj

With specie enthalpy hi formulation from Eqn.23,

∂hi
∂xj

=
∂

∂xj

∫ T

0

Cp,idT

Temperature field T varies in space and hence, Cp,i
which is a function of T also varies in space. By
the Liebniz’s differential under the integral rule,

∂hi
∂xj

= Cp,i
∂T

∂xj
+

∫ T

0

∂Cp,i
∂xj

dT

∇hi = Cp,i∇T +

∫ T

0

∇Cp,idT
(25)

On substitution of Eqn.25 in the second term of
Eqn.24,

n∑
i=1

Yi∇hi =

n∑
i=1

YiCp,i∇T

+

n∑
i=1

Yi

∫ T

0

∇Cp,idT

From Eqn.12,

n∑
i=1

Yi∇hi = Cp∇T +

n∑
i=1

Yi

∫ T

0

∇Cp,idT (26)

From Eqn.19, 24, 26 & 20 and after rearrange-
ment,

Qh = −α∇h

= −λ∇T − α

(
n∑
i=1

hi∇Yi

)

− α

(
n∑
i=1

Yi

∫ T

0

∇Cp,idT

) (27)

The gradient of specie specific heat Cp,i arises
due its dependence on temperature.

∇Cp,i =
dCp,i
dT

∇T (28)

It is clear that conductive heat flux Q evaluated
from Qh and QT formulations are not identical.
In Eqn.27, the enthalpy gradient occurs not only
because of temperature gradients (Term 1) but
also from the gradients of specie mass fractions
(Term 2) and the variation of specie specific heat
capacities due to temperature gradients (Term 3).

Two methods are proposed to overcome this issue
on the heat conduction term in the energy equation.

1. To implement the conduction term in terms
of temperature gradient i.e QT (Eqn.18).

2. To add a correction term to the Qh formula-
tion.

The first method is straightforward but enthalpy
h is the unknown in the energy equation (Eqn.15)
and hence the heat conduction term with Q in
terms of temperature gradient, can only be added
as an explicit source term i.e fvc. This will lead
to solver instability when the heat conduction term
dominates the energy equation.
In the second method (Eqn.29), corrections are
added to the Qh formulation to arrive at a formu-
lation equivalent to QT.

Qnew = −α∇h+ α

(
n∑
i=1

hi∇Yi

)

+ α

(
n∑
i=1

Yi

∫ T

0

∇Cp,idT

) (29)

This renders the heat conduction term partially
implicit in enthalpy (−α∇h term) with the correc-
tions as explicit source terms resulting in better
solver robustness than the first method.



The simulations discussed in the present work are
carried out with constant values of species specific
heat capactities Cp,i, i ∈ S. Hence, the third term
in the RHS of Eqn.29 vanishes.

Qnew = −α∇h+ α

(
n∑
i=1

hi∇Yi

)
(30)

2.4 Enthalpy transport due to inter-species
diffusion

The different gas species in a multi-component sys-
tem will have different enthalpy values hi. As the
gases diffuse into one another, the corresponding
enthalpy transport should also be considered. Ig-
noring the enthalpy transport due to inter-species
diffusion will result in incorrect temperature field
[1]. The fourth term (−∇ ·

∑n
i=1 Fihi) in the RHS

of the energy equation (Eqn.15) accounts for the
enthalpy transport due to diffusive flux Fi. This
term is completely ignored in the RPF solver and
therefore added as an explicit source term in the
energy equation of ’containementFoam’ solver.

2.5 Turbulence contribution

The equations discussed above are valid only for
laminar flows where the diffusion terms of momen-
tum, species mass fractions and enthalpy are mod-
elled with kinematic viscosity ν(momentum diffu-
sivity), effective specie diffusivity Di and thermal
diffusivity α respectively. If turbulence modelling is
considered, then the turbulence contribution of dif-
fusivity should be added. Turbulence modeling in
the present work(wherever specified) is done with
the standard k−ω−SST model by Menter[REF3].
Turbulent eddy diffusivity νt is obtained from the
turbulence model.
Turbulence contribution to the momentum diffusiv-
ity is reflected in the viscous stress tensor (Eqn.14)
formulation as

τ = ρ (ν + νt)

[
∇U + (∇U)T − 2

3
δ∇ · U

]
(31)

Turbulence correction to the specie diffusive flux Fi
yields

Fi = −ρ
(
Di +

νt
Sct

)
∇Yi (32)

The final form of the conductive heat flux Q after
the addition of turbulence contribution is

Qnew = −
(
α+

ρνt
Prt

)
∇h

+

(
α+

ρνt
Prt

)( n∑
i=1

hi∇Yi

) (33)

3 Algorithm

The multicomponent gas flow modeling involves
a tightly coupled set of equations. The PIM-
PLE algorithm implemented in the ’containment-
Foam’ solver is the same as in the base RPF
solver with slight modification (Fig.1). The den-
sity field change may come about due to change in
the species mass fractions or due to the pressure-
temperature changes through the ideal gas equation
of state. Hence, the density field is kept in two dif-
ferent variables i.e. solver density ρsolver and ther-
modynamic density ρthermo for different situations
arising in different parts of a PIMPLE iteration. In
addition, variable φf which denotes the mass flux at
control volume faces in the discretized equations, is
also related to density. This can be explained by the
discretization of the continuity equation (Eqn.10)
through the finite volume method.
On integration of the continuity equation over the
control volume V

∂

∂t

∫
V

ρ dV +

∫
V

∇ · (ρU) dV = 0

∂

∂t

∫
V

ρ dV +

∫
S

(ρU) · dS = 0

(34)

where S is the surface of the control volume. For
simplicity, time discretization here is done with the
Euler implicit method.

ρn − ρ0

∆t
V +

∑
f

(ρU) · Sf = 0 (35)

where ρn and ρ0 are density values at new time step
and old time step respectively, ∆t is the time step,
f denotes the faces of the control volume and Sf is
the surface normal vectors of those faces. The mass
flux through a control volume face f is given by

φf = (ρU) · Sf (36)

It is important that the density value becomes con-
sistent in all the three variables ρsolver, ρthermo and
φf over the course of a PIMPLE iteration.
At the first step continuity equation/mass conser-
vation equation(10) is solved and the density ρ∗solver
becomes consistent with the mass fluxes φf at that
instant. In the momentum predictor step, the ve-
locity field U∗ is calculated with the existing pres-
sure field p according to the Eqn.13. The velocity
field thus obtained is not the actual solution but
only a prediction. Then the species mass fractions
are computed using the expression in Eqn.5. As
discussed in section 2.2.1, only n − 1 specie mass
fraction equations are solved and for the nth specie
Yn is calculated using the Eqn.11. With the new
mass fractions Y ∗i , the mixture specific heat capac-
ity C∗p (using Eqn.12) and effective mixture molecu-
lar weightW ∗ (using Eqn.37) are calculated. Then,



the energy equation (Eqn.15) is solved and the new
static enthalpy h∗ is evaluated.

W ∗ =
1∑

i∈S

(
Y ∗
i

Wi

) (37)

3.1 Thermodynamic corrector step

Thermodynamic properties are updated in this
step. At first, new temperature T ∗ is com-
puted from enthalpy h∗ based on the enthalpy-
temperature relation through the Newton-Raphson
method. Then, the thermodynamic density
ρthermo∗ and compressibility ψ∗ are calculated
with ideal gas relations as in Eqn.38.

ρ∗thermo =
p

Ru

W∗T ∗

ψ∗ =
1

Ru

W∗T ∗

(38)

where, Ru is the universal gas constant with the
value 8314.462 J.K−1.kmol−1. µ∗ and α∗ are com-
puted based on the new specie mass fractions Y ∗i
using Eqn.12.

3.2 Pressure equation block

Pressure, velocity and density changes with pres-
sure are all computed in the pressure equation block
of the code. First, the solver density is set equal to
the thermodynamic density updated in the thermo-
dynamic corrector step.

ρ∗∗solver = ρ∗thermo (39)

With this new solver density, pressure-velocity cou-
pling steps are executed. Here, the momentum
conservation equation and continuity equation are
combined to give new values of pressure, mass
fluxes and velocity i.e. p∗, φ∗f and U∗∗. The face
mass fluxes φ∗f is consistent with the new pressure
field p∗, but density values ρ∗thermo and ρ∗∗solver are
inconsistent with the pressure field p∗. The ther-
modynamic density is adjusted for the change in
pressure by

ρ∗∗thermo = ρ∗thermo + ψ∗(p∗ − p) (40)

The solver density is made consistent with the face
mass flux field φ∗f (or pressure p∗) through the con-
tinuity equation.

3.3 Convergence

The turbulence fields are solved for if the turbulence
model is activated. The PIMPLE iterations con-
tinue till solution convergence or for the maximum
number of PIMPLE iterations, whichever comes
first.

4 Deficiencies in the ’reactingParcelFoam’
solver

The RPF solver available in OpenFOAM-6 was
found to have a few deficiencies in its original form.

4.1 Inconsistency in the PIMPLE algorithm

In the RPF solver, the continutity equation is
solved only in the final PIMPLE outer corrector
step or if the number of outer correctors is set as
1(PISO mode). This clearly violates the conditions
discussed in section 2.1.3. And, the solver density
is inconsistent with the mass fluxes φf , if continuity
equation is not solved. This results in the usage of
incorrect density field in the species mass fraction,
momentum conservation and energy equations.

4.2 Incorrect enthalpy transport

The multicomponent flow modeling is tightly cou-
pled in terms of density, specie mass fraction, en-
thalpy and temperature. Due to the incorrect heat
conduction term, the absence of the source term to
account for enthalpy transport due to inter-species
diffusion and the error present in the PIMPLE al-
gorithm results in the calculation of incorrect en-
thalpy field. An incorrect enthalpy field means an
incorrect temperature field. The temperature field
affects the density field through the ideal gas equa-
tion of state. Wrong density field again influences
the results of species mass transport equations, mo-
mentum conservation and energy equation. As the
PIMPLE iterations progress, this vicious circle am-
plifies the errors and results in incorrect solutions.
In the next section the impact of the existing errors
are shown in a systematic manner and the necessity
of the corrections are demonstrated.

5 Model Verification

The necessary corrections to be made to the ’react-
ingParcelFoam’ solver are summarised in Table.1.
The ’reactingParcelFoam’ solver and the ’contain-
mentFoam’ solver use different diffusivity values to
model the specie diffusion flux Fi and hence can-
not be directly compared. Moreover, temperature
divergence or incorrect enthalpy transport is the
major issue addressed in the present work. To
have consistent modeling of diffusion flux Fi term
in the two solvers, the ’reactingParcelFoam’ solver
is tweaked only to have the Fi term same as ’con-
tainmentFoam’ solver (Eqn.32) with all the other
terms and PIMPLE algorithm as in original Open-
FOAM implementation. This modified version of
’reactingParcelFoam’ solver from hereon is referred
to as ’Without correction’ and the ’containment-
Foam’ solver with all the necessary corrections is
called as ’With correction’.
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Figure 1: PIMPLE algorithm

Term/Equation reactingParcelFoam containmentFoam
Diffusion flux Fi Fi = −ρ (ν + νt)∇Yi Fi = −ρ

(
Di + νt

Sct

)
∇Yi

Conductive heat flux Q Q = −
(
α+ ρνt

Prt

)
∇h

Q = −
(
α+ ρνt

Prt

)
∇h

+
(
α+ ρνt

Prt

)
(
∑n
i=1 hi∇Yi)

Enthalpy transport due
to inter-species diffusion Ignored −∇ ·

∑n
i=1 Fihi

PIMPLE algorithm

Continuity equation is solved at the
beginning of a PIMPLE iteration

only if the total number of PIMPLE
iterations per time step is one or if it

happens to be the final PIMPLE iteration.

Continuity equation is solved at the
beginning of every PIMPLE iteration.

Table 1: Summary of corrections

The plots of temperature fields are made in con-
junction with the species concentration fields to em-
phasize the importance of various model corrections
necessary for accurate enthalpy transport especially

in the regions of sharp species concentration gradi-
ents. Three major phenomenon namely i) Binary
diffusion ii) Heat conduction and iii) Convection are
tested separately with one-dimensional simulations.



Finally, the model is applied to a two-dimensional
mixing channel case where all three phenomena co-
exist and the general applicability of the model is
shown. Turbulence modeling is considered only for
the two dimensional mixing channel simulation.

5.1 Test Case I - Binary diffusion (1D)

Case Description:
To test the model only under the conditions of bi-
nary diffusion of gases, the other effects of convec-
tion and heat conduction are masked. Convection
phenomenon is made impotent by setting the ve-
locity initial field to null value. Heat conduction
is prevented by setting the thermal diffusivity of
the species αi = 0, i ∈ S. The one dimensional
domain is of length 1m, discretized into 100 uni-
formly spaced grid points. Two gas species He-
lium (HE) and Air (AIR) with very different spe-
cific heat capacities(Cp of Air = 1004.4 J/kg.K &
Cp of Helium = 5240 J/kg.K) are considered. This
is to emphasize the importance of enthalpy trans-
port due to inter-species diffusion. Since only two
gas species are considered, the species mass frac-
tion equation(Eqn. 5) is solved only for the Helium
species with a constant diffusivity Di and the mass
fraction of Air is computed by enforcing the con-
straint in Eqn.11. The initial conditions are sum-
marized in Table 2. One half of the domain is com-
pletely filled with Helium and other half is fully
filled with Air and the gases are allowed to diffuse
for t = 10s.

Variable Value
Species Mass Fraction

HE

{
1 0 ≤ x ≤ 0.5

0 0.5 < x ≤ 1

AIR 1 - HE
Temperature [K] 303.15

Table 2: Binary Diffusion - Initial Conditions

Discussion of results:
The results of the Helium volume fraction field
and temperature is shown in Fig.2. For the model
without corrections, there is a non-physical tem-
perature divergence in places of species concentra-
tion gradients. This can be explained by the ab-
sence of the source term to account for enthalpy
tranpsort due to inter-species diffusion in the en-
ergy equation(−∇ ·

∑n
i=1 Fihi). Physically, this

means the Helium and Air species diffuse into each
other(through Fi term in the species mass trans-
port equation Eqn.5) but do not carry along their
individual enthalpies(hi, i ∈ S). In the corrected
model, the expected isothermal temperature field
is obtained.

5.2 Test Case II - Heat Conduction(1D)

Case Description:
In this test case, the validity of the solver is investi-
gated only under the condition of heat conduction.
The flow domain and the initial conditions are same
as the previous case(Binary diffusion). Species dif-
fusion is made irrelevant by setting binary diffusiv-
ity Di = 0. Appropriate species thermal diffusivity
values(αi, i ∈ S) are defined for Helium and Air.
Discussion of results:

From the results(Fig. 3), it is clear that the model
without corrections exhibit nonphysical tempera-
ture values in regions of species concentration gra-
dients. With the ’reactingParcelFoam’ solver, the
conductive heat flux(Q) is in terms enthalpy gradi-
ent(Eqn.19). And, in regions of sharp species con-
centration gradients, the gradient of enthalpy(h)
is non-zero even when the gradient of temperature
field(T ) is zero, resulting in incorrect heat flux(Q).
After the addition of correction term(Eqn.29), the
expected temperature field is obtained.

5.3 Test Case III - Convection(1D)

Case Description:
The test case is formulated to check the solver only
under the condition of bulk motion. Species dif-
fusion and heat conduction phenomena are made
insignificant by defining species diffusivity(Di) and
thermal diffusivity values to zero. The flow domain
is one dimensional with only three control volumes
of uniform size with an inlet and an outlet as shown
in Fig.4a. The initial and boundary conditions are
summarised in Table.3. The domain is completely
filled with Air initially and Helium is injected into
the domain through the inlet. The case is isother-
mal. The simulation is carried out for a total of
1s with a time-step of 1s with only one PIMPLE
iterative loop.
Discussion of results:

At the first time-step as the Helium specie enters
the domain, non-physical temperature field is ob-
served in the model without corrections. This be-
haviour can be only attributed to the incorrectness
in the PIMPLE algorithm implemented in the ’re-
actingParcelFoam’ solver(Ref. section 3.1). The
continuity equation should be definitely solved in
conjunction with the species mass transport equa-
tion, if only n−1 species mass fraction equations are
solved and constraint(Eqn.11) is used. After recti-
fying this error, the isothermal temperature field is
retained.

5.4 Test Case IV - Mixing channel(2D)

Case Description:
The test case is designed to investigate the solver
correctness in a scenario where all three major phe-
nomena of (i) species diffusion, (ii) heat conduction



a) b)

Figure 2: Binary diffusion a) Helium volume fraction, b) Temperature

a) b)

Figure 3: Heat Conduction a) Helium Volume Fraction, b) Temperature

Variable Initial conditions Inlet BC
Species Mass Fraction

HE 0 1
AIR 1 0

Temperature T[K] 303.15 303.15
Velocity U [m/s] 0 0.1

Table 3: Convection - Initial & boundary conditions

and (iii) convection coexist. Turbulence modeling
is also considered to verify the general applicability
of the solver. The flow domain of is a two dimen-
sional mixing channel of a total length of 0.6m and
channel height of 0.05m with two inlets and one out-

let(Fig. 5). Helium gas enters through the inlet on
the top while steam enters from the bottom inlet.
The gas species come into contact at 0.1 m down-
stream of the inlets and form a mixing layer. As in
the previous cases, an isothermal temperature field



'incorrect' 'correct'

inlet outlet

Figure 4: Convection - Impact of algorithm correction

is used to investigate the temperature divergence
problem. The initial and boundary conditions are
summarized in Table 4.
Discussion of results:

Helium volume fraction and the temperature val-
ues along the plot line(Fig.5) is shown in Fig.6.
The model without corrections suffer from the same
temperature divergence issue discussed in the previ-
ous one dimensional test cases. The solver with cor-
rections gives the correct temperature field across
the mixing layer where sharp species concentration
gradients exist.



inlet 1

inlet 2
outlet

plot line
Helium (HE)

Steam (H2O)

Figure 5: Mixing channel - 2D geometry

Variable Initial conditions inlet 1 BC inlet 2 BC

YHE

{
1 0 ≤ x ≤ 0.5

0 0.5 < x ≤ 1
1 0

YH2O 1 - YHE 0 1
Normal Velocity U [m/s] 0 0.75 0.5

Temperature T [K] 300 300 300

Table 4: Mixing Channel - Initial & boundary conditions

a) b)

Figure 6: Mixing channel a) Helium Molar Fraction, b) Temperature



6 Summary and Conclusions

A thorough review of the existing capabilities of
OpenFOAM to model multi species gas transport
is given and the deficiencies are identified. A new
solver ’containmentFoam’ is developed with neces-
sary improvements to the governing equations and
PIMPLE algorithm for modeling multi-component
gas mixing in nuclear reactor containment flows.
The solver is compared with original base solver in
OpenFOAM on simple one-dimensional and two-
dimensional test cases and the impacts of the cor-
rections are shown. At present, the solver is ap-
plied to simulate Helium layer erosion in large scale
three-dimensional geometries at Forschungzentrum
Juelich with reasonable success [4, 5].
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